
www.manaraa.com

George Feuerlicht

Design of service interfaces for e-business
applications using data normalization
techniques

Published online: 26 July 2005
� Springer-Verlag 2005

Abstract Web Services are being increasingly used for implementing large-
scale e-business applications, but at present there is a lack of comprehensive
methodologies based on sound engineering principles that can guide designers
of service-oriented applications. This lack of methodological support is likely
to lead to poorly designed and difficult to maintain e-business applications. In
this paper we describe a design method for service-oriented applications that
applies data engineering principles and the theoretical framework of data
normalization to service design to produce a set of orthogonal services with
normalized interfaces. We consider the impact of increasing service granu-
larity on cohesion and coupling of service operations, and discuss associated
design trade-offs. We use a travel example based on the Open Travel Alliance
specification to illustrate how a document-oriented standard can be trans-
formed into a set of well-designed service interfaces.

Keywords Web Services Æ Service interfaces design Æ Data normalization Æ
e-business applications

1 Introduction

The general trend towards service-oriented computing and universal support
of Web Services (W3C 2004) across all major technology platforms presents

G. Feuerlicht
Department of Software Engineering, Faculty of Information Technology,
University of Technology, Sydney, NSW, Australia
Tel.: +123-45-678910, Fax: +123-45-678910, E-mail: jiri@it.uts.edu.au

ISeB (2005) 3: 363–376
DOI 10.1007/s10257-005-0015-4

ORIGINAL ARTICLE



www.manaraa.com

a new opportunity to address the problem of e-business (electronic business)
interoperability. The combination of relatively low implementation costs and
wide acceptance of Web Services standards by technology vendors is likely to
make this approach a preferred option for the implementation of e-business
applications. However, as history of electronic commerce over the past two
decades indicates the problem of automating e-business transactions is not
purely a technological issue and requires addressing the more intractable
problem of application interoperability, more specifically the issues associ-
ated with disparate business semantics used by different partner organiza-
tions.

Most existing e-business approaches such as (EDI 2004), (RosettaNet
2004) and (ebXML 2004) rely on standardization of business documents and
processes. Although successful in some industry sectors, wide adoption of
such standards has been slow and limited by their complexity, inflexibility
and high implementation costs. Many industry domains have ongoing
standardization efforts that aim to produce standard documents for com-
munication between e-business partners. For example, the Open Travel
Alliance (OTA) consortium specification (OTA 2004) defines XML Schemas
and corresponding usage scenarios for messages that support business
activities in the travel industry. A common characteristic of the above ap-
proaches is that they emulate paper-based business communications by
shipping structured documents as message payloads; i.e. document exchange
forms the basis of e-business communications. Such document-oriented
standards require that organizations agree on the precise formatting, struc-
ture and semantics of the documents being used for communication.
Industry-wide document standards tend to be highly complex as they need to
accommodate the requirements of all key industry players and include many
optional elements to support diverging needs of partner organizations.
Conformance to document-centric standards involves mapping of standard
documents into data structures used internally by each partner organizations
and typically results in extensive data transformation to ensure compatibility
with internal data standards. It can be argued that the requirements of to-
day’s dynamic e-business environment cannot be satisfactorily addressed
using an interoperability mechanism based on document interchange as
document-centric approaches suffer from limited scalability and flexibility.
Scalability in this context is the ability of the solution to accommodate a
large number of autonomous partner organizations with independently
evolving business semantics, without unduly increasing the complexity of the
specification. Flexibility is needed to allow the evolution of the standard
specification over time to accommodate changes in business processes and
data semantics without impacting on existing applications. Feuerlicht (2003)
gives a more detailed discussion of the limitations of document-centric e-
business and the opportunities to address these limitations with the service-
oriented approach.

Web Services can be used to implement business interactions as services
over the Internet. Instead of using document interchange, service-oriented
applications interact via service interfaces that externalize operations and
encapsulate data structures. Advantages of the service-centric approach in-
clude improved software reliability simplified development, and support for

364 G. Feuerlicht



www.manaraa.com

evolution of interfaces (Bieber 2001). Web Services remove the need to use
document shipping as a mechanism for application interoperability by pro-
viding an essentially ‘‘homogeneous’’ application deployment environment
irrespective of the underlying technology platforms used by individual
partner applications. Important advantage of the service-centric approach is
that service interfaces can be designed to significantly limit exposure of data,
reducing the complexity of message document structures and eliminating
data redundancy. The problem of standardizing document formats and data
semantics is reduced to a more manageable task of standardizing service
interfaces for a given application domain, e.g. travel, healthcare, etc.

Interoperability of service-oriented applications relies on well-defined
service interfaces used consistently across the application domain. Stan-
dardization of service interfaces ensures that service providers (e.g. airlines)
publish identical interfaces, avoiding the need to interpret the semantics of
interfaces published by individual service providers. The abstraction level of
standardized, domain-specific service interfaces is closely related to business
requirements for a particular application domain; in effect, standard service
interfaces provide application developers with a high-level API (Application
Programming Interface) for building domain-specific applications (Feuer-
licht 2003).

Service interfaces must be well-designed to ensure reuse, avoid duplica-
tion in functionality, and minimize interdependencies between services. Web
Services design is an active area of research, but at present there are no
comprehensive design methodologies that can be used to assist designers
with large-scale Web Services projects. In order to be effective, Web Services
design methodology must be based on sound engineering principles and
provide guidelines that assist designers in making design choices (Papazog-
lou 2002).

In this paper we first briefly review current Web Services design research
(Sect. 2) and then describe a service interface design method based on data
engineering principles and normalization of service interfaces (Sect. 3). We
then briefly consider the impact of varying the granularity of service oper-
ations on cohesion and coupling (Sect. 3.3). We illustrate our design ap-
proach using a travel application example based on the OTA specification,
showing how a document-centric specification can be transformed into a set
of well-designed service interfaces. In conclusions (Sect. 4) we summarize the
main contributions of this paper and identify opportunities for further re-
search.

2 Web Services design

Most existing approaches describe Web Services design in the context of
enterprize application development and rely on object-oriented methods or
component-based techniques for designing Web Services applications. For
example, Ambler (2002) proposed a method for deriving Web Services from
UML models. The method involves identifying class contracts that define
public interfaces for a given class, and combining the contracts to reduce the
number of services resulting in a cohesive collection of classes called domain

Design of service interfaces for e-business applications using data normalization 365



www.manaraa.com

packages (i.e. groups of highly coupled classes). The final set of service
contracts are mapped to Web Services operations, and the input and output
parameters of the operations defined using XML schemas. Ambler’s method
is an example of a bottom-up Web Service design approach that defines Web
Services on top of existing components or objects and is useful for migration
to service-oriented architectures. The main focus of this method is grouping
of highly coupled classes into coarser components called domain packages,
and refining the resulting component interfaces to produce larger grained
services that are exported as Web Services.

Papazoglou and Yang (2002) describe a design methodology for Web
Services that transforms business processes into sets of collaborative Web
Services. The methodology provides service design guidelines based on the
principles of minimizing coupling and maximizing cohesion to ensure that
the resulting services are self-contained, modular, extendable and reusable,
and produces definition of WSDL Web Service interfaces and WSFL service
flow models. The methodology also covers non-functional service design
guidelines including service provisioning strategies and service policy man-
agement models. The methodology uses both top-down and bottom-up
approaches to design interfaces for composite Web Services. Top-down
approach is used to analyze business processes and to identify service
invocations required to implement each activity within the scope of the
process, and the bottom-up approach is used to map existing services pro-
vided by external service providers to usage interfaces of the business pro-
cesses.

Levi and Arsajani (2002) proposed component-based Web Services de-
sign method based on identifying business processes and dividing the
problem domain into functional areas based on departmental boundaries,
business process boundaries and value chains. The functional areas (i.e.
major business areas) are mapped to enterprize components which are then
decomposed to identify their constituent business processes creating a goal
model using Goal-Service Graphs. The objective of this step is to identify
high-level business goals, their sub-goals and services required to achieve the
goals. The main benefit of the goal model is that it allows designers to define
services based on business needs. The services identified in the Goal-Service
Graphs are then assigned to enterprize components that are responsible for
providing the services. Service identification involves making decisions about
granularity of the services. Specifications for enterprize components are
created defining the pre and post-conditions for each service and an abstract
specification of component behavior. The main focus of this methodology is
on designing enterprize components suitable for transformation into Web
Services by exporting their interfaces.

Alternatively, existing specifications of business processes as defined
using e-business standards such as RosettaNet (http://www.rosettanet.org)
can be used as a starting point for Web Services design. Masud (2002)
demonstrates how RosettaNet Partner Interface Process (PIP) specifications
can be translated into WSDL and BPELWS definitions (BPELWS 2003).
Web Services are modeled from RosettaNet PIP specifications mapping
actions and their corresponding document schemas to Web Service opera-
tions. Input and output parameters are described in WSDL, and the partner

366 G. Feuerlicht



www.manaraa.com

roles, process and data flows between the partners are mapped to a flow
language specification. The methodology describes how relevant information
can be extracted from RosettNet PIP specifications and the corresponding
document schemas, and used to define Web Service interfaces and chore-
ography descriptions of the interaction semantics between business partners.
Designing Web Services from existing e-business standards enables design of
interfaces and interaction dialogues based on industry-wide standard busi-
ness processes and vocabularies. This avoids the need to define Web Services
for individual partner organizations and results in significantly improved
interoperability. RosettaNet standard consists of specifications that include
dictionaries, implementation framework, and PIP specifications. Masud fo-
cuses on deriving Web Services interface and choreography descriptions
from corresponding PIP specifications and associated Message Structure
definitions. The initial phase of the methodology involves definition of Web
Services operations and their input and output messages using WSDL.
Relevant messages are identified from choreography diagrams and PIP
specifications. WSDL message elements based on RosettaNet message defi-
nition are defined and corresponding operations specified by mapping mes-
sages into operations. The second phase of the methodology deals with
creating BPEL descriptions for interactions between trading partners using
Web Services defined during the first phase. The methodology uses business
process definitions and choreography information defined using UML dia-
grams and associated tables within the PIP specification as the basis for
BPELWS specifications. Partner roles defined in PIP are mapped into
BPELWS, and then the PIP choreography is implemented as choreography
of abstract and executable business processes in BPELWS.

Other approaches include design methods that rely on functional
decomposition to produce modular Web Services (Wieringa et al. 2003),
methods based on translating UML activity diagrams into WSDL descrip-
tions (Hammond 2002), and methods based on Model-Driven Architecture
(MDA) such as (Frankel 2002).

2.1 Design of domain-specific services

Web Services are being increasingly used to implement e-business applica-
tions in various industry sectors. As an alternative to considering the design
of Web Services for individual enterprize applications or components (as in
most of the above papers) we focus on the design of domain-specific services.
Travel industry examples of domain-specific Web Services implementations
include Galileo Web Services (Fontana 2002; Schwartz 2002), Dollar Rent A
Car (http://www.dollar.com/), and Southwest Airlines (Metz 2001). At
present, such applications mostly deploy Web Services to transmit XML
documents via the document style binding using SOAP as the transport
mechanism. This mode of operation, while providing a relatively inexpensive
transport mechanism for interchange of electronic documents, suffers from
the same interoperability limitations as the document-centric approaches
described in Sect. 1. In order to take full advantage of Web Services,

Design of service interfaces for e-business applications using data normalization 367



www.manaraa.com

e-business applications need to adopt the service-oriented approach and
focus on designing interoperable service interfaces. The key issue is devel-
oping a suitable methodological support for such design activity.

The task of designing domain-specific service interfaces is conceptually
similar to the design of programming interfaces or classes in object-oriented
programming, and we can draw from the extensive literature on this topic to
identify guiding principles for interface design, e.g. (Yourdon and Con-
stantine 1979; Meyer 1997), etc. Two design principles are of particular
relevance: maximizing cohesion and minimizing coupling of service opera-
tions (i.e. methods in the context of object-oriented programming). Maxi-
mizing method cohesion refers to the requirement for methods to implement
a single conceptual task and is closely related to the concept of orthogonality
that requires that functionality of methods does not overlap. Minimizing
method coupling (i.e. interdependencies between methods that cause changes
in one method to necessitate changes to related methods), results in im-
proved robustness of applications and ability to accommodate change.
Applying these principles to service interface design leads to improved clarity
of interfaces, reduction in undesirable side effects, and improved flexibility of
applications Venners (1998, 2002). In the following section (Sect. 3) we
interpret these principles using data engineering concepts and use data
normalization to provide the theoretical foundation for service interface
design in order to achieve high levels of orthogonality.

3 Design of service interfaces

In this section we describe a methodology for the design of service interfaces.
We view the task of service interface design from a data engineering per-
spective, using OTA message specifications as a starting point and decom-
posing the message structures and associated business processes into a set of
orthogonal service operations with normalized interfaces. OTA defines a
large number of message (document) formats addressing various aspects of
travel industry activities and providing a comprehensive specification of
information requirements for travel applications. We base our design
examples of the Flight Booking Service on simplified versions of the airline
availability request/response messages: OTA_Air_AvailRQ and
OTA_Air_AvailRS.

Defining service interfaces involves specification of operations and cor-
responding input and output parameters. This task is similar to designing
method signatures in the context of object-oriented design, and requires that
suitable candidate methods are identified. The key guiding principles for the
design of service interfaces are orthogonality (i.e. the functionality of oper-
ations should not overlap), maximization of method cohesion, and mini-
mization of method coupling (Feuerlicht and Meesathit 2004). The proposed
design framework consists of three steps:

(1) Identification of candidate operations using business function decom-
position

(2) Refining interface design using interface normalization

368 G. Feuerlicht



www.manaraa.com

(3) Adjusting granularity of operations based on interface parameters.

Our approach is based on decomposition of complex business functions
into elementary business functions, i.e. simple atomic functions that cannot
be further decomposed (Eriksson and Penker 2000; Larman 2001). We then
map these elementary business functions to simple (service) operations and
identify input and output parameters using the corresponding OTA message
data structures (Sect. 3.1). This approach is consistent with maximizing
method cohesion as elementary business functions typically accomplish a
single conceptual task and exhibit high levels of cohesion. We then perform
normalization of service interfaces eliminating redundant input and output
parameters (Sect. 3.2), and finally consider combining operations to fine-tune
the granularity of services (Sect. 3.3).

3.1 Identification of candidate operations

Consider the Flight Booking Business Function Hierarchy model illustrated
in Fig. 1.

For the purpose of this example we make a number of simplifying
assumptions. We assume that a flight booking is for a single flight segment,
(i.e. a direct flight between the origin and destination location), and that at
most one flight is available for a given flight enquiry (i.e. flight destination
and departure date combination). Figure 1 illustrates function hierarchy that
results from progressive function decomposition until elementary leaf func-
tions are identified (shaded on the diagram). Table 1 contains the corre-
sponding descriptions of e-business functions for the Flight Booking process.

Table 1 Flight booking elementary business functions

Business function Description

Flight enquiry The travel agent requests flight availability for a given pair of
origin and destination cities and a departure date. The airline
response includes flight number, departure airport, departure
time, arrival date, arrival time, and arrival airport

Seat Enquiry The travel agent requests seat availability for a particular flight
specifying the flight number, departure airport, arrival airport,
departure date, and cabin type (e.g. economy). The airline
responds with the quantity of seats available

Price enquiry The travel agent requests pricing information specifying the
flight number, departure airport, arrival airport, departure
date, and cabin type. The airline responds with base fare and
base fare code

Seating request The travel agents request a traveler seating preference
(e.g. an aisle seat). The airline responds with a seat number

Meal request The travel agent requests a traveler meal preference
(e.g. Vegetarian meal). The airline responds with special
meal confirmation

Design of service interfaces for e-business applications using data normalization 369



www.manaraa.com

We note that similar result can be obtained by modeling the interaction
between a travel agent and an airline using a sequence diagram. Each step in
the Sequence Diagram dialog produces a request/response message pair and
corresponds to an elementary business function (Feuerlicht and Meesathit
2004). We can now map the elementary (leaf) business functions in Fig. 1 to
candidate service operations and define interfaces (input and output
parameters) for each operation using corresponding OTA message structures
as shown in Table 2. Using this approach the granularity (i.e. level of

Airline Flight
Booking

Check
Flight

Price
Enquiry

Book Flight Special
Request

Seating
Request

Meal
Request

Flight
Enquiry

Seat
Enquiry

Fig. 1 Flight booking business function hierarchy

Table 2 Candidate Operations for the Flight Booking Service

Service operations Input parameters Output parameters

FlightEnquiry OriginLocation FlightNumber
(Query Request) DestinationLocation DepartureAirport

DepartureDate DepartureTime
ArrivalAirport
ArrivalDate
ArrivalTime

SeatEnquiry FlightNumber Quantity
(Query Request) DepartureAirport

ArrivalAirport
DepartureDate
CabinType

PriceEnquiry FlightNumber FareBasisCode
(Query Request) DepartureAirport BaseFare

ArrivalAirport
DepartureDate
CabinType

BookFlight FlightNumber BookingReferenceID
(Update Request) DepartureAirport

DepartureDate
TravelerName
CabinType

SeatingRequest BookingReferenceID SeatNumber
(Update Request) SeatPreference

MealRequest BookingReferenceID MealType
(Update Request) MealPreference

370 G. Feuerlicht



www.manaraa.com

aggregation) of service operations is determined by the granularity of the
corresponding elementary business functions, and this leads to a fine-grained
solution.

3.2 Refining interface design

As noted earlier, important interface design goal is to minimize coupling
between services. We now need to ensure that the service interfaces defined in
Table 2 are consistent with the principle of minimizing method coupling, and
at the same time maintain a high level of cohesion. Methods (operations) can
be regarded as data transformers and minimization of coupling involves
defining input and output parameters so that interdependencies between
methods and side-effects are minimized (Venners 1998, 2002). This leads to
consideration of the data properties of parameters, and the general rule that
all parameters must be used by the method as data, i.e. not to control the
execution of the method. Minimization of coupling can be interpreted as a
requirement for elimination of redundant interface parameters so that both
input and output parameter sets are minimal. Minimality in this context
implies that parameters are mutually independent; i.e. cannot be derived
from each other. Treating method parameters as data leads to consideration
of functional dependencies between parameters and the application of data
normalization rules (Codd 1971). Functional dependencies (FDs) provide
the underlying theoretical foundation for normal forms used extensively for
elimination of redundancy in database design. We apply these principles here
to reduce method coupling by removing redundant data parameters. So that,
for example, if Flight Number determines Departure Time, then the
Departure Time parameter should not be included in the parameter list of
operations that also include the Flight Number. To capture this requirement
we formulate the following interface design rule:

Rule 1: input and output parameter sets should be minimal, i.e. parameters
must be mutually independent

Venners (2002) classifies methods according to the type of the request
performed into three types: state-view methods (query operations that return
data in output parameters, given query formulated using input parameters),
state-change methods (methods that result in update, insert, and delete
transactions based on input parameters), and utility methods (notifications,
etc.—methods that do not use data parameters). We use a similar classifi-
cation, and categorize methods into Query and Update requests. We for-
mulate an additional rule for query request methods to maximize cohesion
by removing extraneous parameters not generated by the method from the
output parameter set:

Rule 2: output parameters must be fully functionally dependent on the input
parameter set

Rule 2 ensures that method output does not include parameters that are
not directly generated by the method from the input parameter set. In effect,
the parameters of a query request form a relation where the input parameters

Design of service interfaces for e-business applications using data normalization 371



www.manaraa.com

are the key attributes and output parameters are non-key attributes. Data
normalization rules can be applied to this situation to ensure that output
parameters are fully functionally dependent on the input parameter set.
Satisfying the conditions of Rules 1 and 2 ensures that the relation formed by
the query request input and output parameters is in the BCNF normal form
(Boyce-Codd Normal Form) and therefore does not contain redundant
parameters (Date and Fagin 1998). This consideration does not directly
apply to update request methods as the values supplied via input parameters
typically create new records (i.e. insert records) or change existing records
(i.e. update or delete existing records), and return a value that identifies the
new record (e.g. BookingReferenceID, for flight booking), or an acknowl-
edgement (e.g. when ordering a special meal). Assuming the following five
functional dependencies for our travel scenario, we can now apply data
normalization rules to candidate operations in Table 2:

F1 = {OriginLocation, DestinationLocation, DepartureDate fi Flight-
Number}
F2 = {FlightNumber fi DepartureAirport, DepartureTime, ArrivalAir-
port, ArrivalTime}
F3 = {FlightNumber, DepartureDate fi ArrivalDate}
F4 = {FlightNumber, DepartureDate, CabinType fi Quantity}
F5 = {FlightNumber, DepartureDate, CabinType fi BasicFareCode,
BasicFare}

Table 3 Normalized interfaces for Flight Booking Service

Service operations Input parameters Output parameters

FlightEnquiry OriginLocation FlightNumber
(Query Request) DestinationLocation

DepartureDate

ScheduleEnquiry FlightNumber DepartureAirport
(Query Request) DepartureTime

ArrivalAirport
ArrivalTime

ArrivalEnquiry FlightNumber ArrivalDate
(Query Request) DepartureDate

SeatEnquiry FlightNumber Quantity
(Query Request) DepartureDate

CabinType

PriceEnquiry FlightNumber FareBasisCode
(Query Request) DepartureDate BaseFare

CabinType

BookFlight FlightNumber BookingReferenceID
(Update Request) DepartureDate

TravelerName
CabinType

SeatingRequest BookingReferenceID SeatNumber
(Update Request) SeatPreference

MealRequest BookingReferenceID MealType
(Update Request) MealPreference

372 G. Feuerlicht



www.manaraa.com

Applying Rule 1 and using functional dependency F2 we eliminate the
parameters DepartureAirport and ArrivalAirport from the input parameter
sets of SeatEnquiry, PriceEnquiry, and BookFlight operations as these
parameters can be derived from FlightNumber. Similarly, using Rule 1 and
F2 we can eliminate DepartureAirport, DepartureTime, ArrivalAirport, and
ArrivalTime from output parameters of operation FlightEqnuiry. This
leaves FlightNumber and ArrivalDate in the output parameter set of
FlightEnquiry; but this violates Rule 2 as ArrivalDate is partially dependent
on input parameter DepartureDate. This leads to the elimination of Arri-
valDate from the output parameter set. The resulting set of normalized
interfaces (Table 3) includes two new operations: ScheduleEnquiry, and
ArrivalEnquiry that maintain functional dependencies F2 and F3, respec-
tively in order to preserve completeness. Applying interface normalization
rules to all operations in Table 2 we produce a set of interfaces that is
consistent with the design objectives of minimal coupling and maximum
cohesion (Table 3).

3.3 Adjusting granularity of operations

Finding an optimal level of granularity for Web Services and individual
service operations requires further examination. Coarse-grained operations
tend to lack cohesion and suffer from increased levels of coupling, while fine-
grained operations increase the number of service interfaces, and conse-
quently the number of procedure calls at runtime. The above analysis leads
to normalized service interfaces and results in fine-granularity operations.
While this may be theoretically appealing, the associated increase in the
number of runtime calls makes this approach difficult to implement in
practice given the existing low-reliability and slow response time Internet
infrastructure.

3.3.1 Combining operations based on interface parameters

We can use the normalization framework introduced in this section to identify
interfaces that can be combined without introducing parameter redundancies.
For example, it is possible to combine operations based on common input
parameters (i.e. key parameters) without violating the interface normalization
rules introduced in Sect. 3.2. For example, query request operations Se-
atEnquiry and PriceEnquiry share a common input parameter set Flight-
Number, DepartureDate, CabineType. Combining the two interfaces
produces a composite operation SeatPriceEnquiry, as shown in Table 4:

Table 4 Composite Operation SeatPriceEnquiry

Service operations Input parameters Output parameters

SeatPriceEnquiry FlightNumber Quantity
(Query Request) DepartureDate FareBasisCode

CabinType BaseFare

Design of service interfaces for e-business applications using data normalization 373



www.manaraa.com

This clearly leads to some loss of cohesion as the resulting operation no
longer implements a single conceptual task, and in situations where it is used
to perform a partial enquiry (e.g. seat availability enquiry only) the output
parameter set returns values that are not used by the application. This trade-
off can be justified in this instance on the basis that both operations are
frequently performed together, and that the benefits of reduced number of
operations and runtime procedure calls outweighs the loss of cohesion.
Similar considerations apply to update request operations, for example
SeatingRequest and MealRequest can be combined into a composite oper-
ation SeatingMealRequest as illustrated in Table 5 below:

This time, partial request, e.g. seating request only, produces non-
homogeneity in input and output parameter sets, i.e. MealPreference and
MealType remain undefined.

3.3.2 Combining operations by composition

As an alternative to combining operations based on common interface
parameters, complex operations can be constructed programmatically using
elementary operations. For example, a flight between origin and destination
locations (e.g. Sydney and London) in general consists of a number of flight
segments (e.g. Sydney to Singapore, and Singapore to London) so that the
corresponding flight availability request has to check availability for each
segment separately and provide programming logic to determine if the entire
flight is available. Another example involves the travel agent requesting flight
availability information from a number of airlines before making a booking
decision based on some criteria (e.g. the lowest price).

4 Conclusions

In this paper we presented a design methodology for service interfaces that
can be used to transform document-centric specifications into a set of service
interface definitions. The design approach relies on the principles of
orthogonality, maximizing method cohesion, and minimizing method cou-
pling, and uses data normalization techniques to avoid externalization of
redundant interface parameters. As noted in Sect. 3.3 above using the pro-
posed design framework for Web Service interfaces in e-business applica-
tions leads to an increased number of operations for a given Web Service and
consequently to a corresponding increase in the number of procedure calls
required to implement a specific business function. This represents a chal-
lenge given the current Internet environment characterized by unreliable

Table 5 Composite Operation SeatingMealRequest

Service Operations Input Parameters Output Parameters

SeatingMealRequest BookingReferenceID SeatNumber
Update Request SeatPreference,

MealPreference
MealType

374 G. Feuerlicht



www.manaraa.com

network connectivity and unpredictable response times, making the pro-
grammatic approach using low-granularity operations advocated in this
paper only suitable for fast and reliable Intranet environments. However, the
proposed design framework facilitates making informed decisions about
service granularity based on the theory of normalization applied to service
interfaces. As illustrated in Sect. 3.3, composite operations can be con-
structed from operations with fully normalized service interfaces by com-
bining operations based on the properties of interface parameters, and the
impact of loss of cohesion can be evaluated.

We have argued that well-designed service interfaces are a key require-
ment for e-business interoperability. Service interfaces can be designed to
avoid externalizing complex and often redundant data structures that lead to
high-levels of interdependency between applications in the document-centric
approach. The application of data engineering principles to service interface
design has the potential to improve our understanding of the impact of
increasing granularity of operations on cohesion and coupling. Further re-
search is needed to determine how elementary operations can be combined
into larger granularity operations while minimizing undesirable side effects
associated with loss of cohesion and increase in coupling.

Finally we note that the design framework presented in this paper is of
general applicability and can be used to transform any document-centric
specifications (e.g. EDI document definitions) into well-designed service
interface definitions. Importantly, the methodology can be also applied to
design of object-oriented applications and components, as data properties of
interface parameters play an equally important role in determining cohesion
and coupling of methods in object-oriented applications.

References

Ambler SW (2002) Deriving Web Services from UML models, Part 1: Establishing the
process. Available on: http://www-106.ibm.com/developerworks/webservices/library/
ws-uml1/

Bieber G, Carpenter J (2001) Introduction to Service-Oriented Programming (Rev 2.1)
Available on: http://www.openwings.org/download/specs/ServiceOrientedIntroduc-
tion.pdf

BPELWS (2003) Business Process Execution Language for Web Services, Version 1.1, 5
May 2003, Available on: ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf

Codd EF (1971). Normalized data structure: a brief tutorial. In: Proceedings of 1971 ACM-
SIGFIDET workshop on data description, access and control (San Diego, California,
November 11–12, 1971). ACM, New York, pp 1–17

Date CJ, Fagin R (1992) Simple conditions for guaranteeing higher normal forms in
relational databases. ACM Trans Database Syst 17(3):465–476, SSN:0362–5915

ebXML (2004), Available on: http://www.ebxml.org
EDI (2004) UNECE. UN/EDIFACT, Available on: http://www.unece.org/trade/untdid/

welcome.htm
Eriksson HE, Penker M (2000) business modeling with UML: business patterns at work.

Wiley, New York
Feuerlicht G (2003) Implementing Service interfaces for e-business applications. In: Pro-

ceedings of the second workshop on e-Business, WeB 2003, (Seattle, USA, December
13–14, 2003). ISSN:1617–9846

Design of service interfaces for e-business applications using data normalization 375



www.manaraa.com

Feuerlicht G, Meesathit S (2004) Design framework for domain-specific service interfaces.
In: Proceedings of the 2nd international workshop on Web Services: modeling, archi-
tecture, and infrastructure, (Porto, Portugal, April 13–14, 2004). INSTICC Press, pp
109–115, ISBN 972–8865–09–0

Fontana J (2002) Galileo travels down Web services path. Network World [Online], April 9,
2002. Available on: http://www.nwfusion.com/news/2002/0429galileo.html

Frankel D, Parodi J (2002) Using Model-Driven ArchitectureTM to Develop Web Services.
IONA. Available on: http://portals.devx.com/assets/iona/2974.pdf

Hammond J (2002) Introducing Web services into the software development lifecycle,
Rational software Corporation. Available on: http://www.rational.com/media/white-
papers/TP033.pdf

Larman C (2001) Applying UML and patterns : an introduction to object-oriented analysis
and design and the unified process, 2nd edn. Prentice Hall, Upper Saddle River

Levi K, Arsanjani A (2002) A goal-driven approach to enterprise component identification
and specification. Commun ACM 45(10):45–52

Masud S (2002) Use RosettaNet-based Web services, Part 1: BPEL4WS and RosettaNet.
Different thinking. Available on: http://www106.ibm.com/developerworks/webservices/
library/ws-rose1/

Metz C (2001) Testing the waters. PC Magazine [Online], November 13, 2001. Available on:
http://www.pcmag.com/article2/0,4149,154693,00.asp

Meyer B (1997) Object-oriented Software Construction. Prentice Hall, Englewood Cliffs.
ISBN: 0–13–629155–4

OTA (2004) The Open Travel Alliance website. Available on: http://www.opentravel.org/
Papazoglou MP, Yang J (2002) Design methodology for Web services and business pro-

cesses. In: Proceedings of the 3rd VLDB-TES workshop (Hong Kong, August, 2002).
Springer, Berlin Heidelberg New York, pp 54–64

RosettaNet (2004) Available on: http://www.rosettanet.org/
Schwartz E (2002) Triple A Launches Web Service Airline Reservation System. InfoWorld

[Online], August 12, 2002. Available on: http://www.infoworld.com/article/02/08/12/
020812hntriplea_1.html

Venners B (1998) Introduction to Design Techniques. Available on: http://www.java-
world.com/javaworld/jw-02–1998/jw-02-techniques.html

Venners B (2002) API Design: the object. Available on: http://www.artima.com/apidesign/
object.html, April 26, 2002

W3C (2004), W3C Web Services Activity. Available on:http://www.w3.org/2002/ws/
Wieringa RJ, Blanken HM, Fokkinga MM, Grefen PWPJ (2003) Aligning application

architecture to the business context. In: Proceedings of 15th international conference on
advanced information systems engineering (CAiSE 2003) (Klagenfurt, Austria, June 16–
18, 2003). Springer, Berlin Heidelberg New York, pp 209–225

Yourdon E, Constantine L (1979) Structured design. Prentice-Hall, Englewood Cliffs

376 G. Feuerlicht



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Outline placeholder
	ssec1:Introduction
	ssec2:Web Services design
	ssec3:Design of domain-specific services
	ssec4:Design of service interfaces
	ssec5:Identification of candidate operations





	Tab1
	Fig1
	Tab2
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec6:Refining interface design






	Tab3
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec7:Adjusting granularity of operations
	ssec8:Combining operations based on interface parameters








	Tab4
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec9:Combining operations by composition
	ssec10:Conclusions










	Tab5
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27


